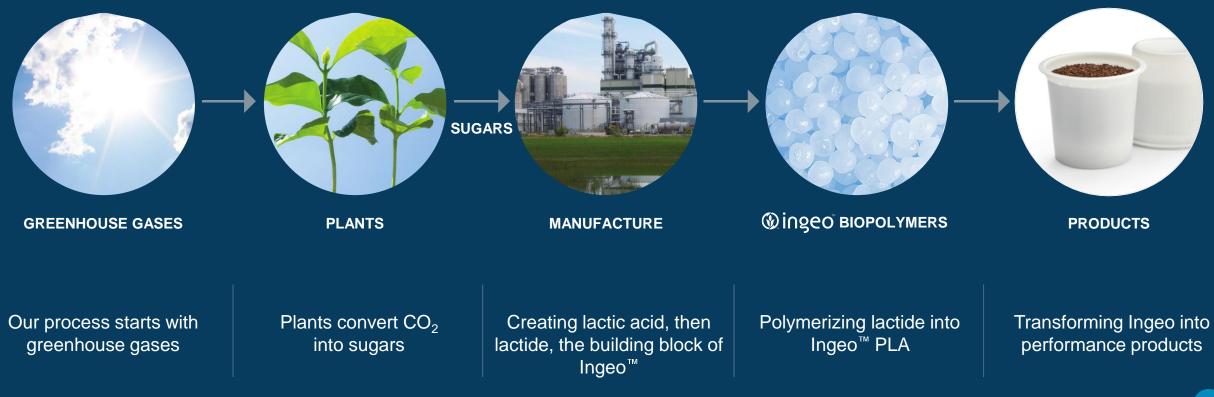
# Nature/Vorks

# NatureWorks & CJ Biomaterials


May 8, 2024



## NatureWorks

### Nature builds things from CO<sub>2</sub>, and so do we

Ingeo polylactic acid is a biobased thermoplastic derived from renewable resources that can be transformed into packaging and products via traditional plastics and fibers manufacturing processes.







#### BLAIR, NEBRASKA FACILITY

- 150,000 MT nameplate capacity
- Excellent safety record
- Polymer plant online in 2002
- 650 acres ~1 sq. mile 263 ha.



### Under construction: New Fully Integrated Ingeo Manufacturing Plant in Thailand



- 75,000 tons per year nameplate capacity
- Dedicated Ingeo manufacturing with integrated lactic acid, lactide, and polymer manufacturing sites
- Located in Nakhon Sawan Province, Thailand
- Will produce the full portfolio of Ingeo grades
- Feedstock (sugar cane) will be sourced within a 50km radius
- Energy co-generation from onsite utilities supplier
- On track to complete construction with full production anticipated in 2025

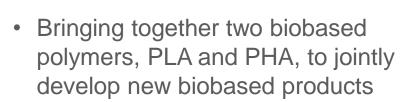


New partnership expanded our product development capabilities beginning to deliver a wider spectrum of mechanical properties and degradation rates

#### May 2022

CJ BIO and NatureWorks Working Towards a Master Collaboration Agreement to Commercialize Novel Biopolymer Solutions

#### November 2022


CJ Biomaterials and NatureWorks Sign Master Collaboration Agreement, Solidifying Relationship to Commercialize Novel Biopolymer Solutions

#### April 2023

NatureWorks introduces new Ingeo PLA x PHACT PHA solution for improved softness and strength in biobased nonwovens for hygiene applications

#### April 2024

CJ Biomaterials introduces two PHACT PHA x Ingeo PLA compounds for compostable film packaging in blown, cast, and machine direction orientation (MDO) film applications

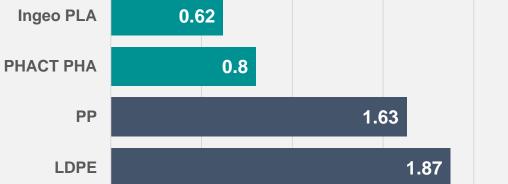


- Modifying PLA with amorphous PHA leads to improvements in mechanical properties, such as toughness, and ductility, while maintaining clarity.
- New after-use opportunities with tunable degradation timelines



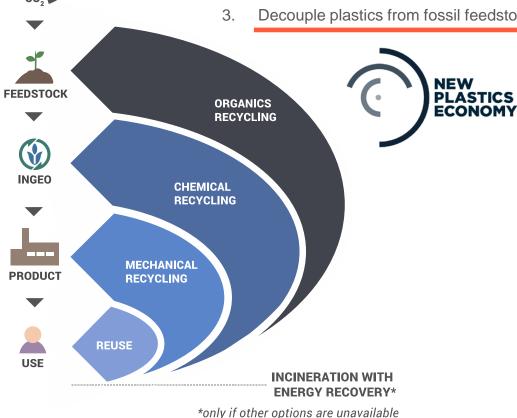





Raw materials made from renewable resources with measurable biogenic content achieve circular economy and carbon reduction objectives



1. 2. 3. **NEW** ORGANICS RECYCLING


#### **THREE AMBITIONS**

- Create an effective after-use plastics economy
- Drastically reduce the leakage of plastics into natural systems & other negative externalities
- Decouple plastics from fossil feedstocks



**Global Warming Potential** 

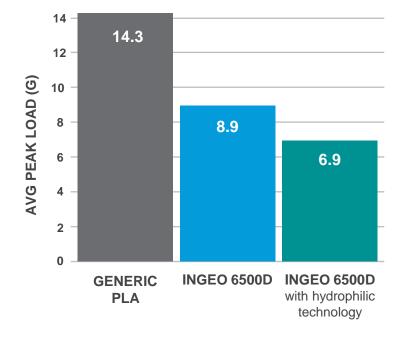
(kg CO2 eq. / kg polymer)



#### On average, Ingeo PLA x PHACT PHA can achieve a 62% reduction in carbon footprint

Sources: Ingeo Eco-Profile CJ Biomaterials Eco-Profile **Plastics Europe** 

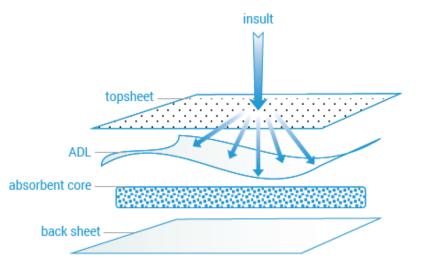
PET


2.15

### Ingeo PLA x PHACT PHA New nonwovens have increased softness and offer fluid management superior to polypropylene for hygiene applications




## Significant improvement in softness with Ingeo 6500D


Ingeo 6500D can improve the softness of spunbond nonwovens by 40% over nonwovens made with generic PLA.



Ingeo 6500D solution combined with topical treatment improves fluid management, durability and breathability

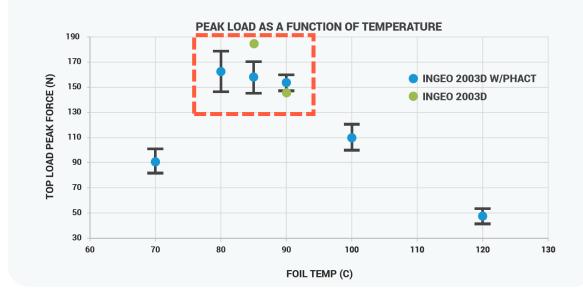


Ingeo nonwovens require less finish to achieve wash-off metrics superior to polypropylene



Switching the PP topsheet in a diaper to one made with Ingeo, can maintain absorption efficiency while reducing SAP content by 30%.

Based on HOM testing with 100 gram weight, 1/4" slot width, and 8x8 sample specimen. Handle-o-meter model number 211-300

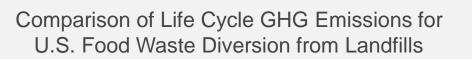


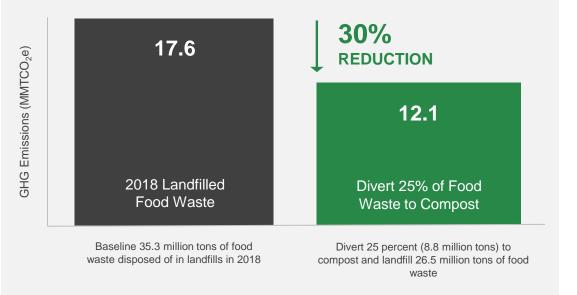

Increasing impact resistance and accelerating compostability in new compostable, rigid thermoformed food containers

- Increased impact resistance required for automated food packaging lines
- Maintained transparency and clarity
- Maintained biobased content

Early assessments show that this new material has high potential to meet the compostable criteria in California's SB1335 statue requiring biodegradation within 60 days

#### **Optimized thermoforming window for increasing line speeds**





# Composting is a way to address food waste, plastic waste, and climate change



Keeping food out of landfills helps tackle climate change.

- Landfills are the 3<sup>rd</sup> largest source of methane emissions from human activities both in the USA and globally
- Adding compost to soils improves carbon sequestration & biodiversity
- Compostable food packaging facilitates food waste diversion from landfills/incineration to compost





A recent study from the US EPA showed that diverting another 25% of the food waste landfilled in 2019 to compost facilities would reduce the associated GHGs emissions by approximately 30%.

#### Sources:

http://www.epa.gov/system/files/documents/2022-01/organic\_waste\_management\_january2022.pdf





# Thank you.

Leah Ford Global Marketing & Communications Director leah\_ford@natureworksllc.com linkedin.com/in/leahmford/

@natureworks | natureworksllc.com

